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A Vibrating Perfect Crystal Assumed to be a Real One 
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A generalized formula for the integrated intensity of neutrons diffracted by a vibrating perfect crystal 
is derived on the basis of the lamella structure with the symbols of Zachariasen's general theory. The 
formula is introduced together with new experimental data for diffraction from a longitudinally vibrating 
quartz single crystal. 

1. Introduction 

The theoretical and experimental investigations of 
neutron diffraction by a vibrating single crystal by 
Buras, Giebultowicz, Minor & Rajca (1972) and Mi- 
chalec, Chalupa, Sedlfikovfi., Mikula & Petr~.ilka (1974) 
(in these papers the references are given to other 
previous papers) gave results showing a manifold 
enhancement of the average value of integrated re- 
flectivity. The average enhancement was reported to 
be a monotonically increasing function of the vibration 
amplitude. 

If  only the integrated reflectivity is assumed, an 
arbitrary real crystal may constitute an intermediate 
stage between two ideal cases; an ideally perfect 
crystal (dynamical theory) and an ideally imperfect 
crystal (kinematical theory). 

According to Zachariasen (1967), the integrated 
intensity of a beam diffracted by the non-vibrating 
crystal, Pm can be expressed in the form 

PN = ekinYext , (1) 

where Pkin is the intensity origin by the kinematical 
approximation and Yext the extinction factor. Pki. is 
given by the relation 

Pki,=PovA(p)Q , (2) 

where Po is the incident intensity, v is the irradiated 
crystal volume, A(/~) is the transmission factor with 
linear absorption coefficient/~ and Q is the reflectivity 
per unit volume. Furthermore in this paper we shall 
assume A(p )=  1. 

We are interested in the problem of determining the 
general extinction factor yVxt of the vibrating perfect 
crystal, the finding of which enables the vibrating 
perfect crystal to be considered as a real one, being 
the intermediate case mentioned above. 

The factor v Ycxt will evidently be time dependent and 
responsible for the time modulation of the diffracted 
neutrons (Michalec, Sedlfi.kov~i, Chalupa, Galociov~i & 
Petr~ilka, 1971). 

2. Integrated intensity of neutrons diffracted 
by a vibrating perfect crystal 

Let us consider a lattice plane (hkl) of a single-crystal 
bar parallel to the XZ plane (Fig. 1). The bar is cut 
in this way in order to be able to vibrate it longitu- 
dinally in the Y direction with the resonance frequency 
Kf= Kco/2~c=Kcr/2L, where K is the mode order, Cr 
is the velocity of ultrasonic waves in the Y direction 
axis and L is the length of the bar parallel to the Y axis. 

The displacement Uy~ of the plane (hkl) at an ar- 
bitrary point, y, of the bar for the Kth harmonic can 
be described by a simple sinusoidal function in space 
and time 

Krc 
UyK = UoK sin --~- y sin Kcot, (3) 

where U0K is the maximum amplitude of the Kth har- 
monic and t is the time. 

The elastic deformation 3 UyK/Oy and the movement 
of the lattice plane with velocity 3U~x/~t (which in- 
duces Doppler and aberration effects) bring about a 
time-dependent alteration ~0(y, t) = O(y, t)5-- Oo of the 
Bragg angle 0o (Michalec, Sedl~ikovfi, Cech & Pe- 
tr~Alka, 1971) 

~ (y , t )=  (0Uyr 1 cgUyK) 
- O f  + [vr[ cgt tg 0o, (4) 

where Ivy[ =v0 sin 00 and v0 is the velocity of the in- 
cident neutrons. The relation (4) is valid for 00<~g/2. 

According Michalec et al. (1974) the integrated in- 
tensity is a monotonically increasing function of 
[&p(y, t)l, where to a good approximation for y ~_ L/2K 

&p(y, t) _ U0r K2c°2D tg2 00 KTc 
v~. sin--L y sin Kcot, (5) 

in which the contribution of elastic deformation is 
neglected. 6~o(y,t) corresponds to the change of the 
angle ~o(y,t) during the time cSt=D tg Oo/[vrl, which 
the neutrons spend in the bar of thickness D. Formula 
(5) holds if D tg Oo~y and cSt~ T, where T is the vi- 
bration period. 



P. M I K U L A ,  R. M I C H A L E C ,  B. C H A L U P A ,  L. SEDL/kKOV/k A N D  V. PETR7,~LKA 689 

If a linear dependence of the integrated intensity on 
the value I&0(y, t)l is assumed, the quantity (2/re) I&0(y, t)[ 
can be interpreted as the averaged angle of total re- 
flectivity of the vibrating perfect crystal (Mikula, 
Michalec, t~ech, Chalupa, Sedl~ikovS. & Petr~ilka, 
1974). Thus the integrated intensity of the vibrating 
perfect crystal P~.(y, t ) ,  in the sample position for 
symmetric transmission, can be simply expressed in 
the form 

l&0(y,t)[ 
P ~a.(Y, t) = 2PN - -  - - ,  (6) 

zcs 

where Pu is the integrated intensity corresponding to 
the non-vibrating case and 2s is the angle interval of 
total reflectivity for a perfect non-vibrating crystal 
given by 

2 s -  2~'2NcFhta 
zc sin 200 ' (7) 

in which the symbols have their usual meanings. 
As in the paper of Buras et al. (1972) the ratio 

[6~0(y, t)[/(zcs/2) can be assumed to be the number of 
independently diffracting perfect 'crystalline layers' 
parallel to the Y axis and perpendicular to the X axis 
[see Fig. l(a)] in the position of symmetric Laue 
transmission. Mikula et aL (1974) prefer to deal with 
the ratio ]&~(y,t)l/(z~s), which they interpret as the 
number of ideally perfect 'layers' perpendicular to the 
Y axis, and they use the symbols defined for symmetric 
Bragg reflexion. Then 2PN means the integrated in- 
tensity diffracted by one 'layer'. 

It is apparent that during the time interval At when 
16~0(y,t)l 7:zcs the relation (6) is not valid, because 
the value P~n(y, t) cannot be lower than PN. Therefore 
it is necessary to make At~  T/2, which can be done by 
increasing the amplitude UoK. Then the deviation of 
the real value of the integrated intensity from the 
calculated one can be neglected. 
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Fig. 1. Schematic arrangement for neutron diffraction by a 
vibrating single crystal bar with respect to the crystallo- 
graphic system of coordinates, n is the unit vector in the 
positive direction of the Y axis. 1 - once-reflected neutron 
beam, 2 - incident beam after the single diffraction process, 
3 - possible secondary reflected neutron beam, 4 and 5 - the 
beam engaged twice in the diffraction process and reflected 
only once, 6 - incident beam engaged twice in the diffraction 
process without any reflexion (see Appendix). 

If  the amplitude U0~ is greatly increased, the inte- 
grated intensity P[in(Y, t) approaches the limiting value 
Pkin of an ideally imperfect crystal. This case occurs 
during the period T whenever the ratio I&o(y, t)l/(ns) 
is comparable with the value of the ratio D tg Oo/text, 
w h e r e  tex t is the extinction length given by the ex- 
pression 

2 sin 0o 
text= 2NcFhk," (8) 

For an extension of the validity of formula (6) 
under these conditions, it is necessary to introduce the 
new relation for the integrated intensity P~,.n(Y, t) in 
the form 

P~,in(y,t)=ZPN [&o(y,t)l C(y, t ) ,  (9) 
US 

where C(y, t) is the correction (White, 1950; Michalec 
et al., 1974) 

C(y,t)= [1-exp  ( -  2D tg Ooz~S 
textl&o(y,t)l ) ] " 

(10) 

When the time interval fit is comparable to T, the 
integrated intensity P~tn(Y, t) of the primarily diffracted 
neutrons can be reduced as a result of possible secon- 
dary reflexions (Mikula et al., 1974). The reduction of 
P~,tn(Y, t) to the value pV(y) = pV(y, t) can be expressed 
by means of a factor y°(D) [for C(y, t) = 1] in the form 

pV(y)=2p N [&0(y,t)[ yO(D)=p]i.(y,t)yO(D) ' (11) 
7CS 

in which (see Appendix) 

Koo D 
sin - -  

yO(D) = 2v0 cos 0o 
KooD " (12) 

2Vo cos 0o 

The factor y°(D) can be interpreted as the 'secondary 
extinction factor' of the vibrating perfect crystal if 
6t _< T and C(y, t) = 1. 

In a similar manner to definition (12), we may also 
introduce the coefficient y O =y~(t) [for C(y, t) = 1] 

yO= 2[&o(y,t)/, (13) 
gS 

which characterizes the change due to primary extinc- 
tion. 

Hence from equations (1), (2), (11), (12) and (13) we 
obtain the following general expression for pV(y), 

pV(y)=PovQye~ty°y°-- Pki.YextV . (14) 

The factor v o 0 Yext =YextYlY2 can be taken as a general 
extinction factor for the vibrating perfect crystal and 

A C 31A - 11 
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pV(y) as the integrated intensity of neutrons diffracted 
by a 'real mosaic' crystal. It is apparent that the ex- 
treme cases of this 'real' crystal are the perfect non- 
vibrating one (U0r=0) and ideally imperfect one 
( u 0 ~  +~o). 

For the amplitude U0K extremely large we must 
write the corrected extinction quantities yz,y2(D) 
[instead of y°,y°(D)] in the following way (see Appen- 
dix) 

yz= yt( t )= y°(t)C(y, t)  , (15) 

yz(D) = 1 

where 

4K l ~t12 ( l _ KCot ] 
yz(t)T ~o y~(t) --~-o ! C(y , t )d t ,  (16) 

2f10 = Kco6t (17) 

corresponds to the change of the vibration phase 
during the time interval St. 

It can be seen from formulae (15) and (16) that 

1 
lim yz= , (18) 

UOK--* + ~ Yex t 

lim yz(D)= 1. (19) 
U oK --~ + oo 

For the non-vibrating crystal (UoK=0) we put yz=yO 
= 1, yz(D)=y°(D)= 1, which cannot be seen from the 
theory discussed. 

3. Nearly perfect single crystal 

The theoretical considerations in §2 can to a good 
approximation also be applied to nearly perfect 
crystals if we introduce a quantity Sexp (instead of s, 
but with the same meaning) as the parameter which 
can be determined from the experimental value of the 
integrated reflectivity. Similarly the parameter 5t/2 - 
the half width of the diffraction pattern of a single 
domain - is introduced by Buras et al. (1972). If the 
real crystal is assumed to be an aggregate of perfect 
crystal domains, Yo~t is the 'Zachariasen' extinction 
factor of the non-vibrating sample, in which the ef- 
fect of both primary and secondary extinctions is 
included. 

From the dynamical theory of diffraction by perfect 
crystals, PN is a linear function of s. If Sexp is introduced 
this linearity also holds for nearly perfect crystals. 
Then using either (6) or (9), we arrive at the following 
conclusion: nearly perfect crystals of different quality 
behave (for sufficiently large amplitude UoK) in the 
same way as real crystals of nearly the same general 
extinction factor v Yext, if the same experimental con- 
ditions are applied to all the samples. The validity of 
this conclusion has been experimentally verified and 
reported by Chalupa, Michalec, Cech, Mikula, Sed- 
l~ikov~i, PetrLilka & Zelenka (1975). 

4. Experimental results 

To illustrate some of the results following from the 
theory we used a bar cut from a nearly perfect quartz 
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Fig. 2. The integrated intensity p v of  neut rons  diffracted by 
the planes (01.0) as a function of the resonant current i for 
K= 1, it= 1.05 A, and for two thicknesses D= 3 mm [curve 
(a)l and D= 14 mm [curve (b)l. 
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Fig. 3. The integrated intensity p v  of  neut rons  diffracted by 
the planes (02.0) as a function of the resonant current i for 
K= 1, 2= 1.05 N and two thicknesses D= 3 mm [curve (a)l 
and D = 14 mm [curve (b)l. 
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single crystal in the position of symmetric transmission. 
The dimensions of the bar were: 3 mm in the X direc- 
tion, 120 mm in the Y direction and 14 mm in the Z 
direction. The measurements were carried out by 
means of the crystal spectrometer TKSN-400 (Pe- 
tr~ilka, Michalec, Chalupa, Sedhikov~i, t~ech, Mikula 
& V~ivra, 1972). The width of the incident beam was 
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Fig. 4. Experimentally measured values of the extinction coef- 
ficient yt(t) as a function of the resonant current i for the 
planes (01.0) [curve (a)] and (02.0) [curve (b)], related to the 
thickness D = 10 mm, with 2 = 1.54 A. 

10 mm. For the detection of the average intensity 
values a I°BF3 proportional counter was used and for 
the investigation of the time modulation a thin glass 
scintillator NE 905. 

The bar was piezoelectrically excited in the longi- 
tudinal mode in the Y direction at the fundamental 
resonance frequency (K= 1) f=22 .6  kHz by means of 
a precise sinusoidal generator and an amplifier. The 
amplitude U01 for K= 1 was measurable with a mi- 
croscope and the linear dependence of U01 on the reso- 
nant current i in the interval from 0 to 10 mA was 
observed. The amplitude U01= 10/zm corresponds to 
a current i =  5 mA. 

The neutron beam axis crossed the bar at y =  5L/12. 
Figs. 2 and 3 show the enhancement of the integrated 

intensity of neutrons diffracted by (01.0) and (02.0) 
planes versus the resonant current i flowing through 
the vibrating crystal. The curves (a) correspond to 
the thickness D = 3  mm and curves (b) to D =  14 mm 
(using simple rotation round the Y axis). In both the 
cases the neutrons of wavelength 2 = 1.05/~ were used. 
In Michalec et al. (1974), the calculated theoretical 
values of P~,tn(y,t)/PN are compared with the expe- 
rimental results obtained using the same sample. 

Fig. 4 shows the dependence of experimental value 
of the extinction coefficient Yl on the resonant current 
i for 2 = 1.54 A. 

The time-modulation measurements were carried out 
by means of multichannel analyser with a channel 
width of 1/zs. 

The time dependence of the extinction coefficient 
y~(t) throughout the period T is shown in the Fig. 5 
for 2=1 .54  /~ and i=0.75 mA, using diffraction by 
the plane (01.0). 

Fig. 6 demonstrates the time dependence of yx(t) 
obtained using the plane (02.0) for 2 =  1.54 A_ and i =  
0.35 mA. 
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Fig. 5. Experimentally measured time dependence of yl(t) 
obtained on diffraction by a vibrating crystal bar from the 
plane (01.0), D=3 mm, i=0"75 mA and 2=1-54/~. Tis the 
vibration period. 

5. Discussion 

It can readily be seen from Fig. 2 that in the current 
interval from 1 to 2.5 mA, the integrated intensity 
pV(y) [see relation (11)] is dependent only on the ir- 
radiated crystal volume v when the condition yz(D)~- 
y°(D) = 1 is accurately fulfilled, pV(y) can be simply 
expressed in the form [C(y, t)= 1] 

2KZco z tg z 00 Kn 
pV(y)~--Pr, i.(y,t)=2P~UoK nZSV ~ V sin --L-- y ,  

(20) 

in which P~ = PN/S is the integrated intensity per unit 
area of the front face of the irradiated crystal volume; 
v = S .  D, where S is the total area of the front face. 
Since in both positions of the vibrating bar, to which 
the curves (a) and (b) correspond, the irradiated crystal 
volume is the same, it follows from formula (20) that  
the corresponding integrated intensities will also be 
equal. The condition given above together with the 

A C 31A - 11" 
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results published by Michalec et al. (1974) show that 
the simple expression (6) can be employed only in the 
current interval from 1 to 2.5 mA. 

For larger currents (i > 2-5 mA), the condition y,(D) 
= 1 is not fulfilled for the thickness D =  14 mm cor- 
responding to the curve (b). This shows the necessity 
of using the corrected form (9) of the integrated in- 
tensity P[~.(y, t). As the amplitude U0r is increased 
(for i>2.5 mA), the coefficient yx(t) approaches its 
limiting value more quickly than the part 

i6t/2 ( l _ Kcot ] 
o y~(t) ~-o } C(y,t)  

of formula (16), which results in the relative enhan- 
cement of the secondary reflexions. 

Fig. 3 illustrates the same but more pronounced 
effect of the secondary reflexions when the plane 
(02.0) is used. 

It can be seen from Fig. 4 and formulae (10), (13) 
and (15) that large values of yl =yt(t)  can be obtained 
by using planes (hkl) with large corresponding struc- 
ture factors Fhk~. 

Figs. 5 and 6 depict the results of the experimentally 
measured time dependence ofy~(t) for (01.0) and (02.0) 
planes. The eradication of the minima is brought 
about by the time resolution of the registration equip- 
ment and the width of the incident beam. It is evident 
that for 0o--# 0 the time of flight of the neutrons between 
the sample and the detector is dependent on the co- 
ordinate y. 

The authors wish to thank Miss B. Ha~kov~i and 
Mr J. V~ivra for their valuable help throughout the 
measurements. 

APPENDIX 

Derivation of the general expression for y2(D) (K= 1) 

Let us suppose that the time spent by neutrons in the 
crystal bar is ~t. During ~t there also occurs the change 
~(OUyidOt) of the velocity O UyK/Ot and the phase cot is 
changed by the value co6t=2fl0. With the elastic de- 
formation neglected, neutrons primarily reflected at 
the instant h by the planes moving with velocity 
(OUyJOt)q can be secondarily reflected back into the 
incident beam at the instant tz by planes of the same 
type if the condition (~ Uy~/Ot)t~ = (~ Uy~/Ot), 2 holds (Mi- 
kula et al., 1974). Apparently the relation t 2 - h < 6 t  
must also be fulfilled. 

It can be seen from Fig. 7 that in the secondary dif- 
fraction process at the instant t z=2n/co-h  only the 
neutrons primarily reflected at the instant h take part 
when cob lies in the phase interval from n - t 0  to n. An 
exactly similar situation occurs in the interval from 
2 n - t 0  to 2n+~0. Further we restrict ourselves only 
to the phase interval from n/2 to 3n/2 and omit the 
subscripts. 

The neutrons from all parts of the crystal which are 
primarily reflected in the phase range (n/2 < cot < n - t 0 )  
will leave the bar without secondary reflexion and the 
contribution to the average intensity pV(y)=pV(y, t )  
will be given by 

1 I =-p° . . . .  
n ,'hi2 P[ln(y,t)d(cot), (A1) 

where P~in(Y, t) is defined by formula (9). 
The neutrons primarily reflected in the range 

( n - t 0  < cot < n) contribute 

1 f ~ P~,i,(y,t) n -co t  d(cot) (A2) 
.-B0 P0 " 
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Fig. 6. Experimentally measured time dependence of y~(t) 
obtained on diffraction by a vibrating crystal bar from the 
plane (02.0), D =  14 ram, i=0.35 mA and 2 =  1"54/~. 
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Fig. 7. Schematic diagram of sinusoidal dependence of the 
plane velocity ~Uyl/Ot on the phase o)t used for the estima- 
tion of the secondary reflexion effect. 
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The part (n-cot)/flo determines what proportion of 
neutrons primarily reflected at the arbitrary instant 
t(n-flo < cot< n) will not be engaged in the secondary 
diffraction process since they will leave the crystal 
before the instant 2nlco- t(n < 2 n -  cot < n +,rio) when 
the diffraction conditions are fulfilled for the second 
time. The remaining part [1-(n-coO/rio] determines 
the proportion which are engaged in the secondary 
diffraction process. Formula (10) indicates that neu- 
trons representing the intensity, 

P~,in(y,t) (1 .... n , c o t )  C(y,t) (A3) 
#o 

are.reflected to the direction of the incident beam and 
that neutrons representing 

P[i.(y,t) (1 n-cot]30 ! [1-C(y,t)] (A4) 

are flying in the direction of the primarily reflected 
beam. Hence the total contribution to the average 
intensity value is 

1 I n P~ln(y,t)(1 n - c o t ) [ l  C(y,t)]d(cot) (A5) 
7C n- Bo flo 

In the range (n < cot < n +fl0), it is necessary to 
estimate the proportion of neutrons, engaged only 
once in the diffraction process, which have entered the 
crystal during the time 2(t-n/co) since the equivalent 
diffraction conditions were last fulfilled. As in ex- 
pression (A2), we obtain the intensity contribution of 
these neutrons in the form 

° 

n Pr, i.(y, t) cot- n . . . . . .  f l~-  d(cot). (A6) 

In the range (n < cot< n+fl0) we could also find the 
neutrons primarily engaged in the diffraction process 
in the range (n-f l0<cot<n),  but owing to the cor- 
rection (10) they would remain in the incident beam. 
Thus, neutrons of intensity 

2P,, 1~9(y,t)l [1-C(y,t)] 1 (A7) 
ns flo 

from the incident beam are secondarily engaged at the 
diffraction process in the range (n<cot<n+flo) and 
intensity 

2PN l&0(y,t)l [1-C(y,t)] 1 C(y,t) (A8) 
ns flo 

is reflected to the direction of the primarily reflected 
beam. Then, the intensity contribution over the range is 

~-1 f[+#° P[in(y,t) (1 cot-n ) (19) 

In the range (n+flo<cot<3n/2), the intensity con- 
tribution is the same as in the range (n/2 < cot < n-flo) 
and we obtain 

1 c'\a~/2 P[in(y,t)d(cot). (A10) 
7Z ,l~+B0 

When the contributions (A1), (A2), (A5), (A6), (A9) 
and (A10)are summed and substitution is made, the 
intensity pV(y) can be expressed as 

T I r/4 P~t.(Y, t)dt pV(y) = -T ~0 

4 t i  t12 ( c o t )  
T P[~n(y,t) 1 ..... flo C(y,t)dt,  (All)  

in which P[~,(y, t) is determined by relation (9). 
Using formulae (9), (10), (13) and (15), we define 

the factor of 'secondary extinction' yE(D) by the ex- 
pression 

y2(D) 1 4 1 ~ t l 2  ( c o t )  = y~(t) 1 -  C(y,t)dt (A12) 
yl(t)T ~o flo " 

Putting C(y, t )=  1 we obtain 

4 t'~t/2 ( 1 -  cot S-~lfl~ -°- 0o 
y°(D) = 1 y°(t)T Y°(t) flo-) dt= . 

(A13) 

For estimation of the time dependence of pV(y, t) 
(time modulation of the neutron beam) we present the 
procedure in the range (n/2<cot<n). In the range 
(n/2 < cot < n-flo) pv(y, t) is, with good agreement, 
equal to the function P[~n(y,t). In the range ( n -  
il0 < cot < n), the theory presented yields pV(y, t) in the 
form 

pv(y , t )=p[ , , ( y , t ) [ l_  (e n-cot  ~ C(y,t)] 
- --#o ................. i 

= P ~.n(y, t )y2(D, t ) . (A14) 

Comparing the relations (A12) and (A14) we obtain 
the following expression for the factor y2(D). 

y2(D) = P~.n(y,t)y2(D,t) (A15) 
P[~,(y,t) 
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